
Ponder2

Policies in Pervasive Systems
Kevin Twidle, Emil Lupu
Department of Computing
Imperial College London
http://www-dse.doc.ic.ac.uk/policies

1

http://www-dse.doc.ic.ac.uk/policies
http://www-dse.doc.ic.ac.uk/policies

Overview

• Policies in Pervasive Systems

• Policy-based adaptation

• the Self-Managed Cells Architecture

• Cross-SMC Interactions

• Implementation and Demonstration Overview

• Implementation of the SMC

• Demonstration programs

• Practical Exercises

2

Cardiac Monitoring

Power

RF

Control

Primary unit Secondary unit

Signal conditioning Antenna

Antenna

Control
RF

Tertiary unit/Central Server

Battery

Sensors

UbiMon Body Sensor Node

3

On-body Networks for eHealth

Personal Area Networks

• Heart monitoring, blood-pressure,
oxygen saturation, etc.

• Implanted and wearable sensors.

• Need for continuous adaptation:

• sensor failures, new sensors
and diagnostic units

• changes in user activity and
context

• changes in the patient’s
medical condition

• interactions with other medical
and non medical equipment
e.g. nurse visits at home etc.

4

Policy-based closed adaptation loop

Control
actions

Decisions

Managed
Objects

MonitorEvents

Manager
Agent

Events

Policies
(auth)

New functionality Policies
(oblig/ECAs)

5

•Derive from the need to separate strategy for adaptation
from the implementation of functional aspects.

•Can be dynamically changed: loaded, enabled, disabled
without interrupting the system.

•Are specified for groups of objects, often before objects
are instantiated.

Policies

Rules governing choices in the behaviour of
systems

6

Different Policy Types

•Obligations define which operations need to be
performed when certain events occur. Event-Condition-
Action Rules

•Authorisations define which operations are permitted
and under which circumstances.

•Other policy types: Membership management,
Information Filtering, Trust Management, Delegation,
Negotiation, etc.

7

Policies for Different Functional Areas

•Device and Service Discovery. How to react to new
devices and services and their disappearance.

•Membership Management.

•Context Management. How to react to changes in
location, activities of the user, surrounding environment.

•Clinical Management. How to react to changes in the
clinical condition.

•Security Management.

•Policy Management. Enable, disable, unload policies.

8

Pervasive Spaces

PAN Control

ControlControl
actionsactions DecisionsDecisions

Managed Managed
ObjectsObjects

MonitorMonitorEventsEvents

Manager Manager
AgentAgent

EventsEvents

PoliciesPolicies

New functionalityNew functionality PoliciesPolicies

ControlControl
actionsactions DecisionsDecisionsControlControl
actionsactions DecisionsDecisions

Managed Managed
ObjectsObjects

MonitorMonitorEventsEvents MonitorMonitorEventsEvents

Manager Manager
AgentAgent

EventsEvents

Manager Manager
AgentAgent

EventsEventsEventsEventsEventsEvents

PoliciesPoliciesPoliciesPolicies

New functionalityNew functionalityNew functionalityNew functionality PoliciesPoliciesPoliciesPolicies

Personal Area Networks

Autonomous
Vehicles

Pervasive
Environments

Home Appliance
 Control

ControlControl
actionsactions DecisionsDecisions

Managed Managed
ObjectsObjects

MonitorMonitorEventsEvents

Manager Manager
AgentAgent

EventsEvents

PoliciesPolicies

New functionalityNew functionality PoliciesPolicies

ControlControl
actionsactions DecisionsDecisionsControlControl
actionsactions DecisionsDecisions

Managed Managed
ObjectsObjects

MonitorMonitorEventsEvents MonitorMonitorEventsEvents

Manager Manager
AgentAgent

EventsEvents

Manager Manager
AgentAgent

EventsEventsEventsEventsEventsEvents

PoliciesPoliciesPoliciesPolicies

New functionalityNew functionalityNew functionalityNew functionality PoliciesPoliciesPoliciesPolicies

Intelligent Home
Networks

9

A common pattern

•That can be used at different levels of scale: from
personal area networks, to unmanned vehicles,
intelligent homes, and large distributed systems and
networks.

•That can provide self-management and closed-loop
adaptation at the local level.

•That can provide different levels of functionality.

•That is architectural as well as functional.

•Provides low-coupling between the different services.

10

What is a Self Managed Cell?

•A set of hardware and software components forming an
administrative domain that is able to function
autonomously and thus capable of self-management.

•Management services interact with each other through
asynchronous events propagated through a content-
based event bus.

•Policies provide local closed-loop adaptation.

•Able to interact with other SMCs and able to compose
in larger scales SMCs.

11

Self-Managed Cell (SMC)

Control
actions DecisionsManaged

Objects

Monito
Events

Manager
Agent

Events

Policies

New functionality` Policies

12

SMC Pattern

•Provides low-coupling between the different services.

•Permits the use of different service implementations
when used at different levels of scale.

•Permits to add services to SMCs in order to add
functionality:

• Context service(s) for mobile users and gathering information
from the environment.

• Authentication, Access Control and other security services.

• Provisioning and Optimisation services for control of resources

13

SMC Core Services

•Discovery Service (including membership management)

•Event Service

•Policy Service

14

Cell discovery service

•Discovers new devices and maintains membership.

•Queries device for its profile and services;

•Performs any vetting functions e.g. authentication,
admission control.

•Listens for new service offers and service removals from
the devices

•Generates events to signal new/disconnected devices
or software components. Any interested services can
react to these events.

15

Discovery Service I

Device D
Discovery

Service Y

Hello(Y,...) Discovery Service

broadcasts periodically

with freq. WY
Hello2U(D,prof,@)

Device responds with ID

profile and address

Vetting Protocol

Accept(...,...) event NewDevice(D, ...)

Hello(D,...) Device periodically unicasts

with freq. WD

16

Device Discovery - Separation

Device D
Discovery

Service Y

Hello(Y,...) If device misses NY of these

it assumes it has been separated

from the cell.

event DeviceLeft(D, ...)

Hello(D,...)

NY,ND and WD can be device

specific and policy managed

If cell misses ND of these

it assumes the device has left.

17

Service/Component Discovery

Device D
Discovery

Service Y

event NewService(S, ...)

AddService(S,...)

RemoveService(S,...)

event RemoveService(S, ...)

18

Cell Event Service

•Publish/Subscribe with content based router.

•At-most-once, reliable event delivery.

•To an individual recipient events are delivered in the
same order as received by the router.

•Quenchable publishers to minimise number of
messages and power consumption.

•Supports heterogeneous communication.

19

Event Service Architecture

20

...

Cell Policy Service

Cell Policy
Interpreter

Managed Objects

Event

Policy Objects

Policies
(Text, XML)

Policy
Service

Domains

Holds refs to managed
objects: Devices, SMCs,

Policies, Roles, etc

Actions

Events

21

Managed Objects

•General purpose object
management environment.

•A managed object is anything
that conforms to a set of
interface rules.

•Managed objects can accept
commands

•Four pre-defined types of
managed objects: domains,
policies, factories, external

Policy

service
RMI

.jar file

import

import

import

External

Internal

Factory

/

/svc /fact

RMI

factory

object
remote

invocation

<<create>>

22

Domains for grouping objects

•A domain is a collection of objects
which have been explicitly grouped
together for management purposes e.g.
to apply a common policy

•Domains can be nested.

•Domains can overlap.

•Policies specified in terms of domains.

•Can change domain membership
without changing policy.

A

ED

B C

23

/

event fact

<<create>>

intrusion compromise

inst

event

types

XML

Blaster
WS-Notif

Events

•Event = notification with
named attributes.

•Created by Managed
Objects.

•Trigger policies.

•Can integrate with one or
several external event
buses through adapter
objects.

24

Cell Policy Service II

25

SMC Policies

on new_component(id, profile, addr) do
 if profile == “heart rate” then
 r = /fact/hr.create(profile, addr); /sensors.add(r)

on hr(level) do
 if level > 100 then /sensors/os.setfreq(10min);

 /sensors/os.setMinVal(80)

on context(activity) do
 if activity == “running” then
 /policies/normal.disable(); /policies/active.enable()

auth+ /patient → /os.{setfreq, setMinVal, stop, start}
auth+ /patient → /policies.{load, delete, enable, disable}

26

Inter-SMC Interactions Measurement
& Monitoring

Service
Discovery

Event Bus

Policy
Management Measurement and

Control Adapters
Context

Interaction
Adaptation

Other

Measurement &
Mon itor ing

Service
Discovery

Event Bus

Po licy
Management Measurement and

Contro l Adapters
Context

Interact ion
Adaptat ion

Managed Resources

Measurement &
Mon itor ing

Service
Discovery

Event Bus

Po licy
Management Measurement and

Contro l Adapters
Context

Interact ion
Adaptat ion

Managed Resources

27

Peer-to-Peer Interactions

•Layered SMCs: application /
services / network

•Peer SMCs (peer devices,
peer networks, SLAs…)

…

…

28

SMC Composition

The internal
SMCs cease to
advertise
themselves
externally.

The enclosing
SMC programs
the nested
SMCs

29

SMCs discovery

•On SMC discovery, each SMC assigns discovered SMC to
pre-defined domains.

•Policies for domain apply to assigned SMC.

•SMC Discovery can also result in policy-exchange and
sharing of events and services.

30

SMC Missions: Policy Exchange

31

Policy Exchange II

mission patientT(nurse, patient, ECGlevel, ECGTime) do
 on patient.mloaded() do
 nurse.store(patient.readlog())
 on patient.hr(level) do
 if level > ECGlevel then

 patient.startECG()
 patient.timer(ECGTime, endECG())

 nurse.ecgOn()
 on patient.endECG() do
 nurse.display(patient.readECG())

32

SMC Missions: Policy Exchange

auth+ /nurse → /patient.loadMission // at the Patient
auth+ /patient → /nurse.store // at the Nurse
auth+ /patient → /nurse.displayECG
on newPatient(p) do
 ref = p.loadMission(/patients.interface, p.interface, 82, 40); /

roles[p].add(ref)

33

Current Implementation

Gumstix (Linux, BT, WiFi)

Discovery Service
Policy service
Event service

Serial Comms

BSN Node
802.15.4 gateway

BSN Node
Temperature Sensor

BSN Node
Accelerometer

Oscilloscope PC for Data Collection

Serial
Comms

IEEE 802.15.4
transmission

34

Summary

•Common Architectural Pattern applied at different levels
of scale.

•Content-based filtering event bus provides flexibility and
de-coupling between services.

•Policies for Adaptation and Access Control.
•Composition and P2P interactions across Cells
•Implementation Status

•Event, discovery and policy service - Gumstix and
PDAs

•Event and discovery clients + basic policy interpreter
on BSN nodes.

35

Acknowledgements

Morris Sloman

Naranker DulaySye-Loong Keoh

Alberto Schaeffer

Joe Sventek Stephen Strowes Steven Heeps

36

Ponder2 - The Self Managed Cell

Implementation aspects and practical exercises

37

Managed Objects

•A Managed Object is anything that conforms to the
SMC interface rules

•Four “built-in” types of Managed Objects

• Domains, Policies, Templates, External

•Managed Objects can generate Events

•Managed Objects can give commands to other
Managed Objects

38

Policy Service

•Implements domain
structure.

•Responsible for managing
the “managed objects”

•Triggers evaluation of
policies when events
occur.

Policy

service

CLIRMI

Web Service Interface

Java

39

The Client Shell

•Unix-like client shell

•Multiple concurrent
client shells

•Commands include: ls,
cd, mkdom, rm, ln, read

•Commands generate
the XML for evaluation.

•Can input XML. XML
terminates with “.”

•telnet localhost 13570
40

Self Managed Cell

•Parses and executes XML

•One basic command use - to
select a particular object to
send XML commands to

•All other commands are
implemented by managed
objects
•Domain - add, link,

remove, list
•Factory Object - create
•Policy Object - activate,

event, condition, action

<use name="/pathname/of/object/"
 arg1="value1" arg2="value2">

 <operation1 arg1="value1" ... >

 <oparg1 arg1="value1" ... >
 ...
 </oparg1>

 <oparg2 arg1="value1" ... >
 ...
 </oparg2>

 </operation1>

 <operation2 ...>
 ...
 </operation2>
</use>

41

Events and Policies

P

Managed Object

Temperature
Monitor

Alarm

P

High Temp
Event

Low Temp
Event

Alarm On
Command

Alarm Off
Command

Policy

42

•Used to create a new Managed Object

•Accepts a “create” command and returns a new
instance of a Managed Object.

•Importing new Managed Object code (currently only
from a Jar or Java class file) produces a Factory Object.

Factory Managed Object

43

XML in Action

•use an object
send it commands

•Domain - add, remove

•Root domain - import

•Factory - create

•Alarm - show, hide

/Template/alarm
/alarm

<xml>
 <!-- Import the Alarm display -->
 <use name="/Template">
 <add name="alarm">
 <use name="/">
 <import name=
 "managedobject.AlarmDisplay"/>
 </use>
 </add>
 </use>
 <!-- Create an alarm instance -->
 <use name="/">
 <add name="alarm">
 <use name="/Template/alarm">
 <create/>
 </use>
 </add>
 </use>
</xml>

44

Events

•Notification with named values

•Event types created from the
event factory

•Event types hold a list of their
named arguments

•Managed Objects can create
events from the event types

•Events contain named
arguments and their values

•Events trigger policies

<!-- Create /Event/toohigh -->
<use name="/Event">
 <add name="toohigh">

 <!-- Use the event factory -->
 <use name="/Template/event">

 <!-- Create the event type -->
 <create>
 <!--Name the arguments -->
 <arg name="msg"/>
 <arg name="value"/>
 </create>

 </use>

 </add>
</use>

45

Policy Types

•Obligation Policies define which actions need to be
performed when events occur in the system. Use the
form of event-condition-action rules.

•Conditions: Use Event attributes

•Actions: Give commands to one or more Managed
Objects and/or generate new events

•Authorisation Policies define which actions a subject is
permitted (prohibited) to perform on a target object. [not
yet supported in the this version of the SMC]

46

Policies

•Created through a policy factory.

•Can dynamically associate new
or additional events with a policy.

•Must declare expected
parameters.

•Can be activated and
deactivated.

•Are managed objects. Can be
moved, deleted, created,
activated, deactivated by other
policies.

<use name="/Policy">
 <add name="toohigh">

 <use name="/Template/policy">

 <!-- Create a policy -->
 <create type="obligation"
 event="/Event/toohigh"
 active="true">
 <!-- We need this arg -->
 <arg name= "msg"/>
 <!-- Do this action -->
 <action>
 <use name="/alarm"
 alarm="on"
 title="!msg;"/>
 </action>
 </create>
 </use></add></use>

<use name="mypolicy"
 active="false"/>

47

Body Sensor Node Example

BSN

Discovery

Adaptor

/bsn
Radio

Policy Server

/Policy

Events
Actions

48

BSN Simulation

•Five different discoverable BSNs and an Insulin pump
can be run

•Each BSN can have its value changed and the rate at
which it sends that value

•BSN windows can be closed to simulate them going
out of range

49

BSN Simulation

•BSNs are started using the BSN
Controller

•BSNs may be started and stopped
by clicking on the buttons or by
closing the individual BSN windows.
Close the controller to terminate it.

•To run the BSN controller use
ant bsn Unix
bsn.bat Windows

50

Discovery Event

•Discovery managed object
issues events when BSN is
detected or lost

•A policy creates or
removes the appropriate
adaptor managed object

•Adaptor object acts as
proxy for the BSN and can
receive commands for
them e.g. setrate

 <use name="/Event">
 <add name="newBSN">
 <use name="/Template/event">
 <create>
 <arg name="type"/>
 <arg name="name"/>
 </create>
 </use>
 </add>
 </use>

51

Discovery Policy

•Discovery managed object
issues events when BSN is
detected or lost

•A policy creates or
removes the appropriate
adaptor managed object

•Adaptor object acts as
proxy for the BSN and can
receive commands for
them e.g. setrate

<use name="/Template/policy">
 <create type="obligation"
 event="/Event/newBSN"
 active="true" debug="true">
 <arg name="type"/>
 <arg name="name"/>
 <action>
 <use name="/bsn">
 <add name="!name;">
 <use name=
 "/Template/bsnadaptor">
 <create name="!name;"
 type="!type;"/>
 </use>
 </add>
 </use>
 </action>
 </create>
</use>

52

<use name="/Policy">
 <add name="bphigh">
 <use name="/Template/policy">
 <create type="obligation"
 event="/Event/bsnvalue" active="true">
 <arg name="name"/>
 <arg name="oldValue"/>
 <arg name="newValue"/>
 <condition>
 <AND>
 <EQ>!name; <!-- -->BP1</EQ>
 <GT>!newValue; <!-- -->150</GT>
 <LE>!oldValue;<!-- -->150</LE>
 </AND>
 </condition>
 <action>
 <use name="/bsn/HEART1">
 <set rate="0.1"/>
 </use>
 <use name="/alarm" alarm="on">
 <show/>
 </use>
 </action>
 </create>
 </use>
 </add>
</use>

Blood Pressure Policy

•on bp(value)

 if (value>150)
 && oldValue<=150

do
 /bsn/HEART1
 .set(sensorRate=1)

 /alarm(alarm=on).show

53

Event Filter Policy
<use name="/">
 <add name="eventfilter">
 <use name="/Template/eventfilter">
 <create event="/Event/bsnvalue"/>
 </use>
 </add>
</use>
<!-- Create a policy for filtering the events from the BSNs -->
<use name="/Policy">
 <add name="filter">
 <use name="/Template/policy">
 <create type="obligation" event="/Event/bsnevent" active="true">
 <arg name="name"/>
 <arg name="newValue"/>
 <action>
 <use name="/eventfilter">
 <filter name="!name;" value="!newValue;"/>
 </use>
 </action>
 </create>
 </use>
 </add>
</use> 54

Bootstrap Demo

•SMC is just an empty Domain

•Import Domain Template

•Create Domain

•Be Happy

<!-- Import the template for creating domains -->
<use name="/">
 <!-- /.add("domaintemplate",import(Domain) -->
 <add name="domaintemplate">
 <use name="/">
 <import name="Domain"/>
 </use>
 </add>
 <!-- /.add("Template",/domaintemplate.create()) -->
 <add name="Template">
 <use name="/domaintemplate">
 <create/>
 </use>
 </add>
</use>

55

To Do

•Deletion semantics

•External references with Dump and Restore

•More external protocols

•Freeze and Restart systems

•General JAVA Swing Managed Object

•Access Control Policy

56

Exercise 1 - Policy writing

•Detect high glucose level, activate Insulin pump

•ex1.xml contains basic event definitions for the pump

•You need policies to create and remove a pumpadaptor
instance.

•You need policy to detect glucose over 180 and inject a
dose of insulin every 10 seconds (change glucose rate)

•You need a policy to detect glucose under 180 and raise
the glucose monitoring rate.

•Extra points for adding the alarm (/alarm) into the mix

57

Exercise 1 - New/Lost Pump policy

•on event newPump(name)
 create new pumpadaptor in /bsn/name

•Pumpadaptor create takes attribute name=”!name;”

•on event lostPump(name)
 remove /bsn/name

58

Exercise 1 - Glucose Policies

•glucosehigh policy

on event bsnvalue(name, newValue)
 if name == GLUCOSE1 && newValue > 180
 /bsn/GLUCOSE1.set(rate=10)
 /bsn/IPUMP1.inject(dose=3)

•glucosenormal policy

on event bsnvalue(name, newValue)
 if name == GLUCOSE1 && newValue <= 180
 /bsn/GLUCOSE1.set(rate=2)

59

Notes - Policy Conditions

•Optional condition
<condition> logical condition </condition>

•Where logical condition is

<and>logical conditions</and>
<or>logical conditions</or>
<gt>value1 <!-- --> value2</gt> - value1>value2

•Also <ge>,<lt>,<le>,<eq>,<ne>,<not>

•Event arguments can be used by name as
!argname; e.g. <ge> !value; <!-- --> 25 </ge>

60

Notes - Alarm commands

•<create [title=”string”]/>

•<use [title=”string”] [alarm=”on|off”]>
 <show/>
 <hide/>

61

Notes - BSNAdaptor commands

•<create name=”string”/>
<use>
 <set rate=”value”/>

62

Notes - PumpAdaptor commands

•<create name=”string”/>
<use>
 <inject dose=”value”/>

63

Notes - Running your XML

•The file tutorial.xml reads all the tutorial specifications in
the appendix. You need this to run your XML.

•Create your XML in a new file e.g. ex1.xml

•Add <eval name=”ex1.xml”> to tutorial.xml

•Run using
ant tutorial Unix
tutorial.bat Windows

•Add a little at a time to ex1.xml, then run it. When
working, add a little more, then run it. etc. etc. Use the
shell to inspect your objects.

64

Exercise 2 - A new managed Object

•create a new timer Managed Object with commands
<wake duration=”secs” event=”name”/>
<cancel>

•After secs seconds it generates the named event with
no arguments. Cancel cancels the timer.

•Write XML with new Event and new Policy to set Alarm

•Copy and rename NullManagedObject.java, call it
Timer.java

•Code contains examples of attribute and command
reading

65

Exercise 2 - Thread Notes

•Use a Thread for timing.

new Thread() {
 run() {
 Thread.sleep(secs*1000);
 Event.sendEvent(“/Event/ename”, string1, str2 ...);
 }
 catch (InterruptedException e) {
 }
};

66

Exercise 2 - Running notes (Unix)

•You do not need the tutorial BSN policies

•You can use alarm.xml to set up the alarm

•Create your xml in e.g. ex2.xml

•Compile and run as

javac -d classes -cp ponder2.jar *.java
java -cp ponder2.jar:classes -rmi - \
 -boot alarm.xml
 -boot ex2.xml

67

Exercise 2 - Running notes (Windows)

•You do not need the tutorial BSN policies

•You can use alarm.xml to set up the alarm

•Create your xml in e.g. ex2.xml

•Compile and run using

compile.bat
smc.bat -boot alarm.xml -boot ex2.xml

68

Exercise 2 - XML Notes

•All XML held in Class TaggedElement e.g. xml

String tag = xml.getName(); - get the tag name
String att = xml.getAttribute(“attname”); - get attribute

int size = xml.elements(); - get number of child elements
Element e = xml.getChild(1); - get second child element
where e is either type TaggedElement or TextElement

String text = ((TextElement)e).toString()

69

